Replicon Vectors Derived from Sindbis Virus and Semliki Forest Virus That Establish Persistent Replication in Host Cells

Author:

Perri Silvia1,Driver David A.1,Gardner Jason P.1,Sherrill Scott1,Belli Barbara A.1,Dubensky Thomas W.1,Polo John M.1

Affiliation:

1. Vaccines and Gene Therapy, Chiron Corporation, Emeryville, California 94608

Abstract

ABSTRACT Alphavirus replicon vectors are well suited for applications where transient, high-level expression of a heterologous gene is required. Replicon vector expression in cells leads to inhibition of host macromolecular synthesis, culminating in eventual cell death by an apoptotic mechanism. For many applications, including gene expression studies in cultured cells, a longer duration of transgene expression without resulting cytopathic effects is useful. Recently, noncytopathic Sindbis virus (SIN) variants were isolated in BHK cells, and the mutations responsible were mapped to the protease domain of nonstructural protein 2 (nsP2). We report here the isolation of additional variants of both SIN and Semliki Forest virus (SFV) replicons encoding the neomycin resistance gene that can establish persistent replication in BHK cells. The SIN and SFV variant replicons resulted from previously undescribed mutations within one of three discrete regions of the nsP2 gene. Differences among the panel of variants were observed in processing of the nonstructural polyprotein and in the ratios of subgenomic to genomic RNAs. Importantly, high-level expression of a heterologous gene was retained with most replicons. Finally, in contrast to previous studies, efficient packaging was obtained with several of the variant replicons. This work expands the utility of noncytopathic replicons and the understanding of how alphavirus replicons establish persistent replication in cultured cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3