Complex Formation with Ypt11p, a rab-Type Small GTPase, Is Essential To Facilitate the Function of Myo2p, a Class V Myosin, in Mitochondrial Distribution in Saccharomyces cerevisiae

Author:

Itoh Takashi1,Watabe Akiko1,Toh-e Akio1,Matsui Yasushi1

Affiliation:

1. Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan

Abstract

ABSTRACT We identified Ypt11p, a rab-type small GTPase, by its functional and two-hybrid interaction with Myo2p, a class V myosin of the budding yeast Saccharomyces cerevisiae . The tail domain of Myo2p was coimmunoprecipitated with Ypt11p, suggesting that Ypt11p forms a complex with Myo2p at its tail domain in vivo. Mutational analysis of YPT11 suggests that Myo2p is a putative effector of Ypt11p. Deletion of YPT11 induced partial delay of mitochondrial transmission to the bud, and overexpression of YPT11 resulted in mitochondrial accumulation in the bud, indicating that Ypt11p acts positively on mitochondrial distribution toward the bud. We isolated two myo2 mutants, myo2-338 and myo2-573 , which showed genetic interactions with YPT11 . The myo2-573 mutation, identified by a synthetic lethal interaction with ypt11 -null, induced a defect in mitochondrial distribution toward the bud, indicating that Myo2p plays a crucial role in polarized distribution of mitochondria. The myo2-338 mutation was identified as the mutation that abolished the effect of overexpressed YPT11 , such as the Ypt11p-dependent accumulation of mitochondria in the bud, and the affinity of Myo2p for Ypt11p was reduced. These results indicate that complex formation of Ypt11p with Myo2p accelerates the function of Myo2p for mitochondrial distribution toward the bud.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3