Regulation of Foamy Virus Protease Activity by Viral RNA: a Novel and Unique Mechanism among Retroviruses

Author:

Hartl Maximilian J.1,Bodem Jochen2,Jochheim Fabian2,Rethwilm Axel2,Rösch Paul1,Wöhrl Birgitta M.1

Affiliation:

1. Universität Bayreuth, Lehrstuhl für Struktur und Chemie der Biopolymere & Research Center for Biomacromolecules, 95440 Bayreuth, Germany

2. Universität Würzburg, Institut für Virologie und Immunbiologie, 97978 Würzburg, Germany

Abstract

ABSTRACT Foamy viruses (FVs) synthesize the Pol precursor protein from a specific transcript. Thus, in contrast to what was found for orthoretroviruses, e.g., human immunodeficiency virus, no Gag-Pol precursor protein is synthesized. Foamy viral Pol consists of a protease (PR) domain, a reverse transcriptase domain, and an integrase domain and is processed into a mature protease-reverse transcriptase (PR-RT) fusion protein and the integrase. Protease activity has to be strictly regulated in order to avoid premature Gag and Pol processing before virus assembly. We have demonstrated recently that FV protease is an inactive monomer with a very weak dimerization tendency and postulated protease activation through dimerization. Here, we identify a specific protease-activating RNA motif (PARM) located in the pol region of viral RNA which stimulates PR activity in vitro and in vivo , revealing a novel and unique mechanism of retroviral protease activation. This mechanism is strikingly different to that of orthoretroviruses, where the protease can be activated even in the absence of viral RNA during the assembly of virus-like particles. Although it has been shown that the integrase domain is important for Pol uptake, activation of the foamy virus protease is integrase independent. We show that at least two foamy virus PR-RT molecules bind to the PARM and only RNAs containing the PARM result in significant activation of the protease. DNA harboring the PARM is not capable of protease activation. Structure determination of the PARM by selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE) revealed a distinct RNA folding, important for protease activation and thus virus maturation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3