Inhibition of Herpes Simplex Virus Types 1 and 2 In Vitro Infection by Sulfated Derivatives of Escherichia coli K5 Polysaccharide

Author:

Pinna Debora1,Oreste Pasqua2,Coradin Tiziana1,Kajaste-Rudnitski Anna1,Ghezzi Silvia1,Zoppetti Giorgio2,Rotola Antonella3,Argnani Rafaela3,Poli Guido45,Manservigi Roberto3,Vicenzi Elisa1

Affiliation:

1. Viral Pathogens and Biosafety Unit

2. Glycores 2000 S.r.l

3. Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Ferrara, Italy

4. AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute

5. Vita-Salute San Raffaele University, School of Medicine, Milan

Abstract

ABSTRACT Herpes simplex virus type 1 (HSV-1) and HSV-2 are neurotropic viruses and common human pathogens causing major public health problems such as genital herpes, a sexually transmitted disease also correlated with increased transmission and replication of human immunodeficiency virus type 1 (HIV-1). Therefore, compounds capable of blocking HIV-1, HSV-1, and HSV-2 transmission represent candidate microbicides with a potential added value over that of molecules acting selectively against either infection. We report here that sulfated derivatives of the Escherichia coli K5 polysaccharide, structurally highly similar to heparin and previously shown to inhibit HIV-1 entry and replication in vitro, also exert suppressive activities against both HSV-1 and HSV-2 infections. In particular, the N,O-sulfated [K5-N,OS(H)] and O-sulfated epimerized [Epi-K5-OS(H)] forms inhibited the infection of Vero cells by HSV-1 and -2, with 50% inhibitory concentrations (IC 50 ) between 3 ± 0.05 and 48 ± 27 nM, and were not toxic to the cells at concentrations as high as 5 μM. These compounds impaired the early steps of HSV-1 and HSV-2 virion attachment and entry into host cells and reduced the cell-to-cell spread of HSV-2. Since K5-N,OS(H) and Epi-K5-OS(H) also inhibit HIV-1 infection, they may represent valid candidates for development as topical microbicides preventing sexual transmission of HIV-1, HSV-1, and HSV-2.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3