New Perspective on Uncultured Bacterial Phylogenetic Division OP11

Author:

Harris J. Kirk12,Kelley Scott T.1,Pace Norman R.1

Affiliation:

1. Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347

2. Graduate Group in Microbiology, University of California, Berkeley, California 94720

Abstract

ABSTRACT Organisms belonging to the OP11 candidate phylogenetic division of Bacteria have been detected only in rRNA-based sequence surveys of environmental samples. Preliminary studies indicated that such organisms represented by the sequences are abundant and widespread in nature and highly diverse phylogenetically. In order to document more thoroughly the phylogenetic breadth and environmental distribution of this diverse group of organisms, we conducted further molecular analyses on environmental DNAs. Using PCR techniques and primers directed toward each of the five described subdivisions of OP11, we surveyed 17 environmental DNAs and analyzed rRNA gene sequences in 27 clonal libraries from 14 environments. Ninety-nine new and unique sequences were determined completely, and approximately 200 additional clones were subjected to partial sequencing. Extensive phylogenetic comparisons of the new sequences to those representing other bacterial divisions further resolved the phylogeny of the bacterial candidate division OP11 and identified two new candidate bacterial divisions, OP11-derived 1 (OD1) and Sulphur River 1 (SR1). The widespread environmental distribution of representatives of the bacterial divisions OD1, OP11, and SR1 suggests potentially conspicuous biogeochemical roles for these organisms in their respective environments. The information on environmental distribution offers clues for attempts to culture landmark representatives of these novel bacterial divisions, and the sequences are specific molecular signatures that provide for their identification in other contexts.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3