Affiliation:
1. Laboratory of Microbial Ecology, National Institute of Dental Research, Bethesda, Maryland 20892.
Abstract
Twenty-eight strains of Fusobacterium nucleatum and 41 Selenomonas strains, including S. sputigena (24 strains), S. flueggei (10 strains), S. infelix (5 strains), and S. noxia (2 strains), were tested for their ability to coaggregate with each other and with 49 other strains of oral bacteria representing Actinobacillus, Actinomyces, Bacteroides, Capnocytophaga, Gemella, Peptostreptococcus, Porphyromonas, Propionibacterium, Rothia, Streptococcus, and Veillonella species. Selenomonads coaggregated with fusobacteria and with Actinomyces naeslundii PK984 but not with any of the other bacteria, including other selenomonads. In contrast, fusobacteria coaggregated with members of all genera, although not with all strains of each species tested. Each fusobacterium strain appeared to have its own set of partners and coaggregation properties, unlike their partners, whose coaggregation properties in earlier surveys delineated distinct coaggregation groups. Coaggregations of fusobacteria with the 63 gram-negative strains were usually inhibited by EDTA, whereas those with the 27 gram-positive strains were usually not inhibited. Likewise, lactose-inhibitable coaggregations were common among some strains of fusobacteria and some strains from each of the genera containing gram-negative partners but were rarely observed with gram-positive partners. Heating the fusobacteria at 85 degrees C for 30 min completely prevented coaggregation with most partners, suggesting the involvement of a protein on the fusobacteria. Heat treatment of many of the gram-negative partners not only enhanced their coaggregation with the fusobacteria but also changed lactose-sensitive coaggregations to lactose-insensitive coaggregations. Although fusobacteria coaggregated with a broader variety of oral partner strains than any other group of oral bacteria tested to date, each fusobacterium exhibited coaggregation with only a certain set of partner strains, and none of the fusobacteria adhered to other strains of fusobacteria, indicating that recognition of partner cell surfaces is selective. The strains of F. nucleatum are heterogeneous and cannot be clustered into distinct coaggregation groups. Collectively, these results indicate that coaggregation between fusobacteria and many gram-negative partners is significantly different from their coaggregation with gram-positive partners. The contrasting variety of partners for fusobacteria and selenomonads supports the concept of coaggregation partner specificity that has been observed with every genus of oral bacteria so far examined.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
240 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献