Strain variation in antiphagocytic activity of capsular polysaccharides from Cryptococcus neoformans serotype A

Author:

Small J M1,Mitchell T G1

Affiliation:

1. Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

Strains of Cryptococcus neoformans vary in resistance to phagocytosis in vitro. The binding of isolated capsular polysaccharide (CPS) to a capsule-free mutant of C. neoformans confers resistance to phagocytosis. The importance of capsule composition to differences among strains in susceptibility to phagocytosis was evaluated. CPSs from five strains of C. neoformans serotype A, designated 6, 15, 98, 110, and 145, which had previously been isolated and characterized as to molecular size, composition, and binding properties, were evaluated for relative antiphagocytic potencies. In the presence of 5% normal isologous serum, murine thioglycolate-elicited peritoneal macrophages phagocytized (i.e., attached to or engulfed) 80% of 51Cr-labeled cells of C. neoformans 602, a capsule-free mutant. Added CPS inhibited the uptake of these yeast cells. CPS from strain 110 was most potent, followed in decreasing order of inhibitory activity by CPSs from strains 6, 145, 98, and 15. The presence of 100 micrograms of strain 110 CPS per ml reduced uptake of cells of strain 602 from 80 to 50%. CPS had no effect on the uptake of 51Cr-labeled Saccharomyces cerevisiae. Cells of strain 602 that were preincubated with CPS and then washed were more resistant to phagocytosis than nonpretreated control cells, indicating the importance of bound, not free, CPS. Added CPS did not affect the uptake of wild-type, encapsulated cells of C. neoformans. Addition of endotoxin had no effect on phagocytosis. CPSs from strains of C. neoformans serotype A varied widely in their abilities to inhibit the uptake of capsule-free cells. The antiphagocytic activity of CPS did not correlate with the ability to bind to capsule-free mutant but was somewhat related to the capsule size of the strain from which the CPS was isolated.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3