Affiliation:
1. Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy.
Abstract
Protective immunity to lethal Candida albicans challenge in vivo and activation of splenic macrophages with highly candidacidal activity in vitro were detected in mice infected with low-virulence agerminative yeast cells of the variant strain PCA-2, at a time when a strong delayed-type hypersensitivity (DTH) reaction to C. albicans occurred in the footpads of PCA-2-treated mice. The DTH reaction was transferable with spleen cell populations from these animals, and enrichment of splenic lymphocytes in L3T4+ cells significantly increased the footpad swelling. The reactivity transferred by L3T4+ cells was a radiosensitive (2,500 rads in vitro) phenomenon that required collaboration with radioresistant, silica-sensitive syngeneic cells in the host and was inhibited by treatment of recipient mice with antibodies to the L3T4 antigen or murine gamma interferon. In vitro, the PCA-2-immune L3T4+ cells produced various lymphokine activities upon incubation with C. albicans, including gamma interferon and granulocyte-macrophage colony-stimulating factor. Anti-L3T4 monoclonal antibody treatment of PCA-2-infected mice significantly impaired their footpad reaction and resistance to C. albicans, as shown by increased recovery of yeast cells from the kidneys of anti-L3T4-treated mice. These results suggested that the mechanisms of anti-Candida resistance induced by PCA-2 may involve specific induction of a DTH response mediated by inflammatory L3T4+ T cells and lymphokine-activated phagocytic effectors. However, the survival rate of the PCA-2-immune mice challenged with C. albicans was not significantly modified by administration of the anti-L3T4 antibody, thus allowing for the conclusion that compensatory mechanisms lead to considerable anti-Candida resistance when the activity of L3T4+ cells is deficient.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献