Molecular Mechanisms of β-Lactam Resistance Mediated by AmpC Hyperproduction in Pseudomonas aeruginosa Clinical Strains

Author:

Juan Carlos1,Maciá María D.1,Gutiérrez Olivia1,Vidal Carmen2,Pérez José L.1,Oliver Antonio1

Affiliation:

1. Servicio de Microbiología

2. Unidad de Secuenciación, Hospital Son Dureta, Palma de Mallorca, Spain

Abstract

ABSTRACT The molecular mechanisms of β-lactam resistance mediated by AmpC hyperproduction in natural strains of Pseudomonas aeruginosa were investigated in a collection of 10 isogenic, ceftazidime-susceptible and -resistant pairs of isolates, each sequentially recovered from a different intensive care unit patient treated with β-lactams. All 10 ceftazidime-resistant mutants hyperproduced AmpC (β-lactamase activities were 12- to 657-fold higher than those of the parent strains), but none of them harbored mutations in ampR or the ampC-ampR intergenic region. On the other hand, six of them harbored inactivating mutations in ampD : four contained frameshift mutations, one had a C→T mutation, creating a premature stop codon, and finally, one had a large deletion, including the complete ampDE region. Complementation studies revealed that only three of the six ampD mutants could be fully transcomplemented with either ampD - or ampDE -harboring plasmids, whereas one of them could be transcomplemented only with ampDE and two of them (including the mutant with the deletion of the ampDE region and one with an ampD frameshift mutation leading to an ampDE -fused open reading frame) could not be fully transcomplemented with any of the plasmids. Finally, one of the four mutants with no mutations in ampD could be transcomplemented, but only with ampDE . Although the inactivation of AmpD is found to be the most frequent mechanism of AmpC hyperproduction in clinical strains, our findings suggest that for certain types of mutations, AmpE plays an indirect role in resistance and that there are other unknown genes involved in AmpC hyperproduction, with at least one of them apparently located close to the ampDE operon.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3