Epstein-Barr Virus Exploits BSAP/Pax5 To Achieve the B-Cell Specificity of Its Growth-Transforming Program

Author:

Tierney Rosemary1,Nagra Jasdeep1,Hutchings Isabel1,Shannon-Lowe Claire1,Altmann Markus2,Hammerschmidt Wolfgang2,Rickinson Alan1,Bell Andrew1

Affiliation:

1. Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, United Kingdom B15 2TT

2. Department of Gene Vectors, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, 81377 Munich, Germany

Abstract

ABSTRACT Epstein-Barr virus (EBV) can infect various cell types but limits its classical growth-transforming function to B lymphocytes, the cells in which it persists in vivo. Transformation initiates with the activation of Wp, a promoter present as tandemly repeated copies in the viral genome. Assays with short Wp reporter constructs have identified two promoter-activating regions, one of which (UAS2) appears to be lineage independent, while the other (UAS1) was B-cell specific and contained two putative binding sites for the B-cell-specific activator protein BSAP/Pax5. To address the physiologic relevance of these findings, we first used chromosome immunoprecipitation assays and found that BSAP is indeed bound to Wp sequences on the EBV genome in transformed cells. Thereafter, we constructed recombinant EBVs carrying two Wp copies, both wild type, with UAS1 or UAS2 deleted, or mutated in the BSAP binding sites. All the viruses delivered their genomes to the B-cell nucleus equally well. However, the BSAP binding mutant (and the virus with UAS1 deleted) showed no detectable activity in B cells, whether measured by early Wp transcription, expression of EBV latent proteins, or outgrowth of transformed cells. This was a B-cell-specific defect since, on entry into epithelial cells, an environment where Wp is not the latent promoter of choice, all the Wp mutant viruses initiated infection as efficiently as wild-type virus. We infer that EBV ensures the B-cell specificity of its growth-transforming function by exploiting BSAP/Pax5 as a lineage-specific activator of the transforming program.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3