Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera

Author:

Hulst M M1,Westra D F1,Wensvoort G1,Moormann R J1

Affiliation:

1. Central Veterinary Institute, Virology Department, Lelystad, The Netherlands.

Abstract

The processing and protective capacity of E1, an envelope glycoprotein of hog cholera virus (HCV), were investigated after expression of different versions of the protein in insect cells by using a baculovirus vector. Recombinant virus BacE1[+] expressed E1, including its C-terminal transmembrane region (TMR), and generated a protein which was similar in size (51 to 54 kDa) to the size of E1 expressed in swine kidney cells infected with HCV. The protein was not secreted from the insect cells, and like wild-type E1, it remained sensitive to endo-beta-N-acetyl-D-glucosaminidase H (endo H). This indicates that E1 with a TMR accumulates in the endoplasmic reticulum or cis-Golgi region of the cell. In contrast, recombinant virus BacE1[-], which expressed E1 without a C-terminal TMR, generated a protein that was secreted from the cells. The fraction of this protein that was found to be cell associated had a slightly lower molecular mass (49 to 52 kDa) than wild-type E1 and remained endo H sensitive. The high-mannose units of the secreted protein were trimmed during transport through the exocytotic pathway to endo H-resistant glycans, resulting in a protein with a lower molecular mass (46 to 48 kDa). Secreted E1 accumulated in the medium to about 30 micrograms/10(6) cells. This amount was about 3-fold higher than that of cell-associated E1 in BacE1[-] and 10-fold higher than that of cell-associated E1 in BacE1[+]-infected Sf21 cells. Intramuscular vaccination of pigs with immunoaffinity-purified E1 in a double water-oil emulsion elicited high titers of neutralizing antibodies between 2 and 4 weeks after vaccination at the lowest dose tested (20 micrograms). The vaccinated pigs were completely protected against intranasal challenge with 100 50% lethal doses of HCV strain Brescia, indicating that E1 expressed in insect cells is an excellent candidate for development of a new, safe, and effective HCV subunit vaccine.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3