Affiliation:
1. Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
Abstract
ABSTRACT
Indole is a molecule of considerable biochemical significance, acting as both an interspecies signal molecule and a building block of biological elements. Bacterial indole degradation has been demonstrated for a number of cases; however, very little is known about genes and proteins involved in this process. This study reports the cloning and initial functional characterization of genes (
iif
and
ant
cluster) responsible for indole biodegradation in
Acinetobacter
sp. strain O153. The catabolic cascade was reconstituted
in vitro
with recombinant proteins, and each protein was assigned an enzymatic function. Degradation starts with oxidation, mediated by the IifC and IifD flavin-dependent two-component oxygenase system. Formation of indigo is prevented by IifB, and the final product, anthranilic acid, is formed by IifA, an enzyme which is both structurally and functionally comparable to cofactor-independent oxygenases. Moreover, the
iif
cluster was identified in the genomes of a wide range of bacteria, suggesting the potential of widespread Iif-mediated indole degradation. This work provides novel insights into the genetic background of microbial indole biodegradation.
IMPORTANCE
The key finding of this research is identification of the genes responsible for microbial biodegradation of indole, a toxic
N
-heterocyclic compound. A large amount of indole is present in urban wastewater and sewage sludge, creating a demand for an efficient and eco-friendly means to eliminate this pollutant. A common strategy of oxidizing indole to indigo has the major drawback of producing insoluble material. Genes and proteins of
Acinetobacter
sp. strain O153 (DSM 103907) reported here pave the way for effective and indigo-free indole removal. In addition, this work suggests possible novel means of indole-mediated bacterial interactions and provides the basis for future research on indole metabolism.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献