Hepatitis B Virus X Protein Acts as a Tumor Promoter in Development of Diethylnitrosamine-Induced Preneoplastic Lesions

Author:

Madden Charles R.1,Finegold Milton J.2,Slagle Betty L.1

Affiliation:

1. Department of Molecular Virology and Microbiology1 and

2. Department of Pathology,2 Baylor College of Medicine, Houston, Texas 77030

Abstract

ABSTRACT Chronic infection with hepatitis B virus (HBV) is one of the major etiological factors in the development of human hepatocellular carcinoma. Transgenic mice that express the HBV X protein (HBx) have previously been shown to be more sensitive to the effects of hepatocarcinogens. Although the mechanism for this cofactor role remains unknown, the ability of HBx to inhibit DNA repair and to influence cell cycle progression suggests two possible pathways. To investigate these possibilities in vivo, we treated double-transgenic mice that both express HBx (ATX mice) and possess a bacteriophage lambda transgene with the hepatocarcinogen diethylnitrosamine (DEN). Histological examination of liver tissue confirmed that DEN-treated ATX mice developed approximately twice as many focal lesions of basophilic hepatocytes as treated wild-type littermates. Treatment of mice with DEN resulted in a six- to eightfold increase in the mutation frequency (MF), as measured by a functional analysis of the lambda transgene. HBx expression was confirmed by immunoprecipitation and Western blotting and was associated with a modest 23% increase in the MF. Importantly, the extent of hepatocellular proliferation in 14-day-old mice, as measured by the detection of proliferating cell nuclear antigen and by the incorporation of 5-bromo-2′-deoxyuridine, was determined to be approximately twofold higher in ATX livers than in wild-type livers. These results are consistent with a model in which HBx expression contributes to the development of DEN-mediated carcinogenesis by promoting the proliferation of altered hepatocytes rather than by directly interfering with the repair of DNA lesions.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3