Role of Alpha/Beta Interferon in Venezuelan Equine Encephalitis Virus Pathogenesis: Effect of an Attenuating Mutation in the 5′ Untranslated Region

Author:

White Laura J.1,Wang Jia-Gang2,Davis Nancy L.1,Johnston Robert E.1

Affiliation:

1. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill,1 and

2. Bayer Corporation, Clayton,2 North Carolina

Abstract

ABSTRACT Venezuelan equine encephalitis virus (VEE) is an important equine and human pathogen of the Americas. In the adult mouse model, cDNA-derived, virulent V3000 inoculated subcutaneously (s.c.) causes high-titer peripheral replication followed by neuroinvasion and lethal encephalitis. A single change (G to A) at nucleotide 3 (nt 3) of the 5′ untranslated region (UTR) of the V3000 genome resulted in a virus (V3043) that was avirulent in mice. The mechanism of attenuation by the V3043 mutation was studied in vivo and in vitro. Kinetic studies of virus spread in adult mice following s.c. inoculation showed that V3043 replication was reduced in peripheral organs compared to that of V3000, titers in serum also were lower, and V3043 was cleared more rapidly from the periphery than V3000. Because clearance of V3043 from serum began 1 to 2 days prior to clearance of V3000, we examined the involvement of alpha/beta interferon (IFN-α/β) activity in VEE pathogenesis. In IFN-α/βR −/− mice, the course of the wild-type disease was extremely rapid, with all animals dying within 48 h (average survival time of 30 h compared to 7.7 days in the wild-type mice). The mutant V3043 was as virulent as the wild type (100% mortality, average survival time of 30 h). Virus titers in serum, peripheral organs, and the brain were similar in V3000- and V3043-infected IFN-α/βR −/− mice at all time points up until the death of the animals. Consistent with the in vivo data, the mutant virus exhibited reduced growth in vitro in several cell types except in cells that lacked a functional IFN-α/β pathway. In cells derived from IFN-α/βR −/− mice, the mutant virus showed no growth disadvantage compared to the wild-type virus, suggesting that IFN-α/β plays a major role in the attenuation of V3043 compared to V3000. There were no differences in the induction of IFN-α/β between V3000 and V3043, but the mutant virus was more sensitive than V3000 to the antiviral actions of IFN-α/β in two separate in vitro assays, suggesting that the increased sensitivity to IFN-α/β plays a major role in the in vivo attenuation of V3043.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3