Upstream sequences and cap proximity in the regulation of polyadenylation in ground squirrel hepatitis virus

Author:

Cherrington J1,Russnak R1,Ganem D1

Affiliation:

1. Howard Hughes Medical Institute, University of California Medical Center, San Francisco 94143-0502.

Abstract

The polyadenylation signal of mammalian hepadnaviruses is unusual in that its hexanucleotide element is the variant UAUAAA rather than AAUAAA. This signal functions inefficiently and must be augmented by multiple activator elements located in the upstream 400 nucleotides (nt) to promote efficient processing. Here we characterize one of these upstream elements, termed PS2, in the ground squirrel hepatitis virus. PS2 is located within the 107 nt 5' to the UAUAAA and raises the efficiency of polyadenylation by this signal from < 10% to 50 to 60%. It can function independently of the more 5' activator elements and conversely is not required for their function. Its action is orientation dependent, and a predicted stem-loop structure within the element is not necessary for its activity. PS2 is the sole upstream element that maps within the terminal redundancy of viral genomic RNA. Thus, it is present, together with the UAUAAA, at both the 5' and 3' ends of this RNA. During genomic RNA synthesis, the poly(A) signals in the 5' repeat are bypassed, while those in the 3' copy are used. The ability of PS2 to function independently of the other, more upstream activators suggests that the absence of the latter elements from the 5' redundancy is insufficient to account for bypass of the 5' poly(A) site, as we had earlier proposed. Rather, the short distance from the cap site to the UAUAAA at the 5' end of genomic RNA actively suppresses its use, as this suppression can be experimentally relieved by increasing this distance to 230 to 400 nt.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3