Molecular characterization of an attenuated human immunodeficiency virus type 2 isolate

Author:

Kumar P1,Hui H X1,Kappes J C1,Haggarty B S1,Hoxie J A1,Arya S K1,Shaw G M1,Hahn B H1

Affiliation:

1. Department of Medicine, University of Alabama, Birmingham 35294.

Abstract

Naturally occurring strains of human immunodeficiency virus (HIV) can vary considerably in their in vitro biological properties, and such differences may also be reflected in their in vivo pathogenesis. In an attempt to define genetic determinants of viral pathogenicity, we have molecularly cloned, sequenced, and characterized an attenuated isolate of HIV type 2 (HIV-2/ST) that differs from prototype HIV-2 strains in its inability to fuse with and kill susceptible CD4-bearing target cells. A proviral clone, termed JSP4-27, was identified to be transfection competent and to fully exhibit the noncytopathic and nonfusogenic properties of its parental isolate. Nucleotide sequence analysis of this clone revealed a genomic organization very similar to that of cytopathic HIV-2 strains and an overall nucleotide sequence homology of 88 to 90%. Amino acid sequence comparison confirmed the integrity of all major viral gene products in JSP4-27 but identified two amino acid sequence substitutions in its envelope fusion region. To investigate whether these mutations were responsible for the nonfusogenic phenotype of JSP4-27, we amplified, cloned, and sequenced the envelope fusion regions of four additional HIV-2/ST strains, two of which represented in vitro-generated, fusogenic and cytopathic variants of HIV-2/ST. The analysis showed that all HIV-2/ST strains examined, including the fusogenic variants, contained the same amino acid sequence changes. On the basis of these findings, we conclude that the attenuated phenotype of JSP4-27, and that of its parental virus, is not due to a direct alteration of the envelope fusion domain. Our results also show, for the first time, that individual replication-competent proviral clones can be representative of attenuated strains of HIV.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3