Reverse transcriptase and protease activities of avian leukosis virus Gag-Pol fusion proteins expressed in insect cells

Author:

Stewart L1,Vogt V M1

Affiliation:

1. Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.

Abstract

Protease (PR)-defective avian leukosis virus particles display 300-fold-reduced levels of reverse transcriptase (RT) activity relative to wild-type particles. This observation suggests that during virion assembly RT is activated by proteolytic maturation of the Gag-Pol polyprotein precursor. To study the relationship between proteolytic cleavage and RT activation, we subjected PR-defective virion cores to digestion with purified viral PR and analyzed the structure of the major polypeptides produced as well as RT activity. Under conditions in which Gag precursors were fully matured, the RT domain was only incompletely released from the Gag-Pol precursor, remaining tethered to the upstream Gag domains PR or NC-PR. In the same reaction, RT activity was stimulated only three-fold, or 100-fold less than expected for a fully active RT. The poor activation suggested that the NC or PR domains could repress RT activity. To test this idea, we constructed recombinant baculoviruses expressing 19 different fusion proteins with upstream Gag or downstream Pol sequences attached to RT. Each protein was partially purified and assayed for its inherent RT activity. The results are consistent with the idea that Gag sequences can inhibit RT activity but indicate that the size of the Pol domain as well as the status of the PR domain (wild-type or mutant) also can profoundly influence activity. Several of the constructed Gag-Pol fusion proteins contained a wild-type PR domain. Some of these underwent intracellular PR-mediated processing, while others did not. All proteins in which the PR domain was preceded by upstream Gag sequences showed specific proteolysis. By contrast, all proteins initiated with a methionine placed one residue upstream of the natural N terminus of PR failed to show specific proteolysis. Amino-terminal sequencing of one such protein yielded the correct amino acid sequence and showed that the initiating methionine was not removed. One interpretation of these findings is that activation of PR requires the generation of the precise N terminus of the mature PR.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3