Protein interactions with DNA elements in variant equine infectious anemia virus enhancers and their impact on transcriptional activity

Author:

Carvalho M1,Kirkland M1,Derse D1

Affiliation:

1. Laboratory of Viral Carcinogenesis, National Cancer Institute, Frederick, Maryland 21702-1201.

Abstract

The long terminal repeats (LTRs) from various cloned equine infectious anemia virus (EIAV) proviruses differ significantly, but all contain cis-acting DNA elements identical to MDBP-, PEA2-, AP-1-, and PU.1 (ets)-binding sites. A prototype EIAV LTR would contain one of each of these conserved elements. The LTR variations originate from the insertion of novel sequences between the PEA2 and AP-1 elements in the transcriptional enhancer unit. Viewed in this way, the LTR from provirus clone lambda 12 has an 11-bp insertion containing a PEA2 site and the LTR of the lambda 6 provirus has a 31-bp insertion/duplication containing PEA2, AP-1, and PU.1 sites. Two other LTRs were cloned by amplification of cDNAs from the persistently infected cell line, EIAV-FEA. A third LTR was generated by site-directed mutagenesis of one of the LTRs from EIAV-FEA cells. The latter three had a single base change in the element next to the TATA box that abolished PU.1 binding; however, the variable regions of these LTRs were shown by gel mobility shift assays to contain one or two PU.1 sites. One variable region was shown to have an octamer site overlapping its tandem PU.1 elements. Basal, PMA-activated, and Tat trans-activated transcriptional activities of the LTRs were compared in several different cell lines by transient transfection. The various promoters displayed different relative levels of activity depending on the cell line used and the condition of activation. This natural set of variant promoters may help define how changes in the components of the transcription complex influence transactivation by Tat. The diverse LTRs could endow their respective proviruses with a unique pattern of expression and activation in vivo.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3