Enzymatic activity of poliovirus RNA polymerases with mutations at the tyrosine residue of the conserved YGDD motif: isolation and characterization of polioviruses containing RNA polymerases with FGDD and MGDD sequences

Author:

Jablonski S A1,Morrow C D1

Affiliation:

1. Department of Microbiology, University of Alabama, Birmingham 35294-0007.

Abstract

The poliovirus RNA-dependent RNA polymerase (3Dpol) shares a region of homology with all RNA polymerases, centered around the amino acid motif YGDD, which has been postulated to be involved in the catalytic activity of the enzyme. Using oligonucleotide site-directed mutagenesis, we substituted the tyrosine at this motif of the poliovirus RNA-dependent RNA polymerase with cysteine, histidine, isoleucine, methionine, phenylalanine, or serine. The enzymes were expressed in Escherichia coli, and in vitro enzyme activity was tested. The phenylalanine and methionine substitutions resulted in enzymes with activity equal to that of the wild-type enzyme. The cysteine substitution resulted in an enzyme with approximately 50% of the wild-type activity, while the serine substitution resulted in an enzyme with approximately 10% of the wild-type activity; the isoleucine and histidine substitutions resulted in background levels of enzyme activity. To assess the effects of the mutants in viral replication, the mutant polymerase genes were subcloned into the infectious cDNA clone of poliovirus. Transfection of poliovirus cDNA containing the phenylalanine mutation in 3Dpol gave rise to virus in all of the transfection trials, while cDNA containing the methionine mutation resulted in virus in only 3 of 40 transfections. Transfection of cDNAs containing the other substitutions at the tyrosine residue did not result in infectious virus. The recovered viruses demonstrated kinetics of replication similar to those of the wild-type virus, as measured by [3H]uridine incorporation at either 37 or 39 degrees C. RNA sequence analysis of the 3Dpol gene of both viruses demonstrated that the tyrosine-to-phenylalanine or tyrosine-to-methionine mutation was still present. No other differences in the 3Dpol gene between the wild-type and phenylalanine-containing virus were found. The virus containing the methionine mutation also contained two other nucleotide changes from the wild-type 3Dpol sequence; one resulted in a glutamic acid-to-aspartic acid change at amino acid 108 of the polymerase, and the other resulted in a C-to-T base change at nucleotide 6724, which did not result in an amino acid change. To confirm that the second amino acid mutation found in the 3Dpol gene of the methionine-substituted virus allowed for replication ability, a mutation corresponding to the glutamic acid-to-aspartic acid change was made in the polymerase containing the methionine substitution, and this double-mutant polymerase was expressed in E. coli. The double-mutant enzyme was as active as the wild-type enzyme under in vitro assay conditions.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3