A Cautionary Tale: Lack of Consistency in Allele Sizes between Two Laboratories for a Published Multilocus Microsatellite Typing System

Author:

Pasqualotto Alessandro C.1,Denning David W.1,Anderson Michael J.1

Affiliation:

1. School of Medicine, The University of Manchester, Manchester, United Kingdom

Abstract

ABSTRACT For species with low genetic diversity, typing using the differences in PCR fragment length resulting from variations in numbers of short tandem repeats has been shown to provide a high level of discrimination. This technique has been called multilocus microsatellite typing (MLMT) or multiple-locus variable-number tandem repeat analysis, and studies usually employ genetic or sequence analyzers to size PCR fragments to a high degree of precision. We set out to validate one such system that has been developed for Aspergillus fumigatus (H. A. de Valk, J. F. G. M. Meis, I. M. Curfs, K. Muehlethaler, J. W. Mouton, and C. H. W. Klaassen, J. Clin. Microbiol. 43:4112-4120, 2005). The sizes of the alleles were compared both by sequencing and from two genotyping laboratories, where they used capillary electrophoresis (CE) for sizing. Size differences of up to 6 bases were found between the actual sizes reported by sequencing and the sizes reported by CE. In addition, because the two genotyping laboratories used different machines and running conditions, differences of up to 3 bases were identified between them. As the microsatellite markers used differ by repeat units of 3 or 4 bases, it was not possible to assign PCR fragments to the correct alleles without confirming the sizes of a range of alleles by direct sequencing. Lines of best fit were plotted for each CE machine against actual sizes and will therefore enable unsequenced PCR fragments to be assigned to the correct alleles. This study highlights the care required to ensure that an MLMT system undergoes a suitable correction procedure before data can be merged between different laboratories involved in the typing of individual species.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3