Membrane-Associated Maturation of the Heterotetrameric Nitrate Reductase of Thermus thermophilus

Author:

Zafra Olga1,Cava Felipe1,Blasco Francis2,Magalon Axel2,Berenguer Jose1

Affiliation:

1. Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain

2. Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, CNRS 31, Chemin J. Aiguier, 13402 Marseille, cedex 09, France

Abstract

ABSTRACT The nar operon, coding for the respiratory nitrate reductase of Thermus thermophilus (NRT), encodes a di-heme b-type (NarJ) and a di-heme c-type (NarC) cytochrome. The role of both cytochromes and that of a putative chaperone (NarJ) in the synthesis and maturation of NRT was studied. Mutants of T. thermophilus lacking either NarI or NarC synthesized a soluble form of NarG, suggesting that a putative NarCI complex constitutes the attachment site for the enzyme. Interestingly, the NarG protein synthesized by both mutants was inactive in nitrate reduction and misfolded, showing that membrane attachment was required for enzyme maturation. Consistent with its putative role as a specific chaperone, inactive and misfolded NarG was synthesized by narJ mutants, but in contrast to its Escherichia coli homologue, NarJ was also required for the attachment of the thermophilic enzyme to the membrane. A bacterial two-hybrid system was used to demonstrate the putative interactions between the NRT proteins suggested by the analysis of the mutants. Strong interactions were detected between NarC and NarI and between NarG and NarJ. Weaker interaction signals were detected between NarI, but not NarC, and both NarG and NarH. These results lead us to conclude that the NRT is a heterotetrameric (NarC/NarI/NarG/NarH) enzyme, and we propose a model for its synthesis and maturation that is distinct from that of E. coli . In the synthesis of NRT, a NarCI membrane complex and a soluble NarGJH complex are synthesized in a first step. In a second step, both complexes interact at the cytoplasmic face of the membrane, where the enzyme is subsequently activated with the concomitant conformational change and release of the NarJ chaperone from the mature enzyme.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3