Role of the Two Catalytic Domains of DSR-E Dextransucrase and Their Involvement in the Formation of Highly α-1,2 Branched Dextran

Author:

Fabre Emeline1,Bozonnet Sophie1,Arcache Audrey1,Willemot René-Marc1,Vignon Michel1,Monsan Pierre1,Remaud-Simeon Magali1

Affiliation:

1. Centre de Bioingéniérie Gilbert Durand, UMR CNRS 5504, UMR INRA 792, DGBA INSA, Toulouse, France

Abstract

ABSTRACT The dsrE gene from Leuconostoc mesenteroides NRRL B-1299 was shown to encode a very large protein with two potentially active catalytic domains (CD1 and CD2) separated by a glucan binding domain (GBD). From sequence analysis, DSR-E was classified in glucoside hydrolase family 70, where it is the only enzyme to have two catalytic domains. The recombinant protein DSR-E synthesizes both α-1,6 and α-1,2 glucosidic linkages in transglucosylation reactions using sucrose as the donor and maltose as the acceptor. To investigate the specific roles of CD1 and CD2 in the catalytic mechanism, truncated forms of dsrE were cloned and expressed in Escherichia coli . Gene products were then small-scale purified to isolate the various corresponding enzymes. Dextran and oligosaccharide syntheses were performed. Structural characterization by 13 C nuclear magnetic resonance and/or high-performance liquid chromatography showed that enzymes devoid of CD2 synthesized products containing only α-1,6 linkages. On the other hand, enzymes devoid of CD1 modified α-1,6 linear oligosaccharides and dextran acceptors through the formation of α-1,2 linkages. Therefore, each domain is highly regiospecific, CD1 being specific for the synthesis of α-1,6 glucosidic bonds and CD2 only catalyzing the formation of α-1,2 linkages. This finding permitted us to elucidate the mechanism of α-1,2 branching formation and to engineer a novel transglucosidase specific for the formation of α-1,2 linkages. This enzyme will be very useful to control the rate of α-1,2 linkage synthesis in dextran or oligosaccharide production.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference25 articles.

1. Peptide sequences for sucrose splitting and glucan binding within Streptococcus sobrinus glucosyltransferase (water-insoluble glucan synthetase)

2. Molecular Characterization of DSR-E, an α-1,2 Linkage-Synthesizing Dextransucrase with Two Catalytic Domains

3. Djouzy, Z., C. Andrieux, V. Pelenc, S. Somarriba, F. Popot, F. Paul, P. Monsan, and O. Szylit. 1995. Degradation and fermentation of α-gluco-oligosaccharides by bacterial strains from human colon: in vitro and in vivo studies in gnotobiotic rats. J. Appl. Bacteriol.79:117-127.

4. Dols, M., M. Remaud-Simeon, R. M. Willemot, M. R. Vignon, and P. F. Monsan. 1996. Characterization of dextransucrases from Leuconostoc mesenteroides NRRL B-1299. Appl. Biochem. Biotechnol.62:47-59.

5. Dols, M., M. Remaud-Simeon, R. M. Willemot, M. R. Vignon, and P. F. Monsan. 1998. Structural characterisation of the maltose acceptor-products synthesised by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Carbohydr. Res.305:549-559.

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3