Affiliation:
1. Department of Biochemistry and Virginia Institute for Genomics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Abstract
ABSTRACT
A phosphoserine-containing peptide was identified from tryptic digests from
Sulfolobus solfataricus
P1 by liquid chromatography-tandem mass spectrometry. Its amino acid sequence closely matched that bracketing Ser-309 in the predicted protein product of open reading frame sso0207, a putative phosphohexomutase, in the genome of
S. solfataricus
P2. Open reading frame sso0207 was cloned, and its protein product expressed in
Escherichia coli
. The recombinant protein proved capable of interconverting mannose 1-phosphate and mannose 6-phosphate, as well as glucose 1-phosphate and glucose 6-phosphate, in vitro. It displayed no catalytic activity toward glucosamine 6-phosphate or
N
-acetylglucosamine 6-phosphate. Models constructed using the X-ray crystal structure of a homologous phosphohexomutase from
Pseudomonas aeruginosa
predicted that Ser-309 of the archaeal protein lies within the substrate binding site. The presence of a phosphoryl group at this location would be expected to electrostatically interfere with the binding of negatively charged phosphohexose substrates, thus attenuating the catalytic efficiency of the enzyme. Using site-directed mutagenesis, Ser-309 was substituted by aspartic acid to mimic the presence of a phosphoryl group. The
V
max
of the mutationally altered protein was only 4% that of the unmodified form. Substitution of Ser-309 with larger, but uncharged, amino acids, including threonine, also decreased catalytic efficiency, but to a lesser extent—three- to fivefold. We therefore predict that phosphorylation of the enzyme in vivo serves to regulate its catalytic activity.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献