Characterization of the Replication Region of Plasmid pLS32 from the Natto Strain of Bacillus subtilis

Author:

Tanaka Teruo1,Ishida Hirofumi1,Maehara Tomoko1

Affiliation:

1. Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Shimizuorido, Shizuoka 424-8610, Japan

Abstract

ABSTRACT Plasmid pL32 from the Natto strain of Bacillus subtilis belongs to a group of low-copy-number plasmids in gram-positive bacteria that replicate via a theta mechanism of replication. We studied the DNA region encoding the replication protein, RepN, of pLS32, and obtained the following results. Transcription of the repN gene starts 167 nucleotides upstream from the translational start site of repN . The copy number of repN- coding plasmid pHDCS2, in which the repN gene was placed downstream of the IPTG (isopropyl-1-thio-β- d -galactopyranoside)-inducible P spac promoter, was increased 100 fold by the addition of IPTG. Histidine-tagged RepN bound to a specific region in the repN gene containing five 22-bp tandem repeats (iterons) with partial mismatches, as shown by gel retardation and foot printing analyses. Sequence alterations in the first three iterons resulted in an increase in plasmid copy number, whereas those in either the forth or fifth iteron resulted in the failure of plasmid replication. The iterons expressed various degrees of incompatibility with an incoming repN -driven replicon pSEQ243, with the first three showing the strongest incompatibility. Finally, by using a plasmid, pHDMAEC21, carrying the sequence alterations in all the five iterons in repN and thus unable to replicate but encoding intact RepN, the region necessary for replication was confined to a 96-bp sequence spanning the 3′-terminal half of the fourth iteron to an A+T-rich region located downstream of the fifth iteron. From these results, we conclude that the iterons in repN are involved in both the control of plasmid copy number and incompatibility, and we suggest that the binding of RepN to the last two iterons triggers replication by melting the A+T-rich DNA sequence.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3