Complex Transcriptional Control Links NikABCDE-Dependent Nickel Transport with Hydrogenase Expression in Escherichia coli

Author:

Rowe Jessica L.1,Starnes G. Lucas1,Chivers Peter T.1

Affiliation:

1. Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110

Abstract

ABSTRACT Escherichia coli requires nickel under anaerobic growth conditions for the synthesis of catalytically active NiFe hydrogenases. Transcription of the NikABCDE nickel transporter, which is required for NiFe hydrogenase synthesis, was previously shown to be upregulated by FNR (fumarate-nit rate regulator) in the absence of oxygen and repressed by the NikR repressor in the presence of high extracellular nickel levels. We present here a detailed analysis of nikABCDE transcriptional regulation and show that it closely correlates with hydrogenase expression levels. We identify a nitrate-dependent mechanism for nikABCDE repression that is linked to the NarLX two-component system. NikR is functional under all nickel conditions tested, but its activity is modulated by the total nickel concentration present as well as by one or more components of the hydrogenase assembly pathway. Unexpectedly, NikR function is independent of NikABCDE function, suggesting that NikABCDE is a hydrogenase-specific nickel transporter, consistent with its original identification as a hydrogenase ( hyd ) mutant. Further, the results suggest that the hydrogenase assembly pathway is sequestered within the cell. A second nickel import pathway in E. coli is implicated in NikR function.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3