Two Thimet Oligopeptidase-Like Pz Peptidases Produced by a Collagen- Degrading Thermophile, Geobacillus collagenovorans MO-1

Author:

Miyake Ryoma1,Shigeri Yasushi2,Tatsu Yoshiro2,Yumoto Noboru2,Umekawa Midori1,Tsujimoto Yoshiyuki1,Matsui Hiroshi1,Watanabe Kunihiko1

Affiliation:

1. Department of Applied Biochemistry, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto 606-8522, Japan

2. Cell Engineering Division, National Institute of Advanced Industrial Science and Technology, Midorigaoka, Ikeda 563-8577, Japan

Abstract

ABSTRACT A collagen-degrading thermophile, Geobacillus collagenovorans MO-1, was found to produce two metallopeptidases that hydrolyze the synthetic substrate 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro- d -Arg (Pz-PLGPR), containing the collagen-specific sequence -Gly-Pro-X-. The peptidases, named Pz peptidases A and B, were purified to homogeneity and confirmed to hydrolyze collagen-derived oligopeptides but not collagen itself, indicating that Pz peptidases A and B contribute to collagen degradation in collaboration with a collagenolytic protease in G. collagenovorans MO-1. There were many similarities between Pz peptidases A and B in their catalytic properties; however, they had different molecular masses and shared no antigenic groups against the respective antibodies. Their primary structures clarified from the cloned genes showed lower identity (22%). From homology analysis for proteolytic enzymes in the database, the two Pz peptidases belong to the M3B family. In addition, Pz peptidases A and B shared high identities of over 70% with unassigned peptidases and oligopeptidase F-like peptidases of the M3B family, respectively. Those homologue proteins are putative in the genome database but form two distinct segments, including Pz peptidases A and B, in the phylogenic tree. Mammalian thimet oligopeptidases, which were previously thought to participate in collagen degradation and share catalytic identities with Pz peptidases, were found to have lower identities in the overall primary sequence with Pz peptidases A and B but a significant resemblance in the vicinity of the catalytic site.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3