The Bacteriophage P1 hot Gene Product Can Substitute for the Escherichia coli DNA Polymerase III θ Subunit

Author:

Chikova Anna K.12,Schaaper Roel M.1

Affiliation:

1. Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709

2. D. I. Ivanovsky Institute of Virology, Russian Academy of Medical Science, Moscow, 123098, Russia

Abstract

ABSTRACT The θ subunit ( holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (α-ε-θ), the α and ε subunits carry the DNA polymerase and 3′ proofreading functions, respectively, while the precise function of θ is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these θ homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot . We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive ε subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the θ subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either θ or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49 -ε with θ is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3