Overproduction of CcmG and CcmFH Rc Fully Suppresses the c -Type Cytochrome Biogenesis Defect of Rhodobacter capsulatus CcmI-Null Mutants

Author:

Sanders Carsten1,Deshmukh Meenal1,Astor Doniel1,Kranz Robert G.2,Daldal Fevzi1

Affiliation:

1. Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104

2. Department of Biology, Washington University, St. Louis, Missouri 63130

Abstract

ABSTRACT Gram-negative bacteria like Rhodobacter capsulatus use intertwined pathways to carry out the posttranslational maturation of c -type cytochromes (Cyts). This periplasmic process requires at least 10 essential components for apo-Cyt c chaperoning, thio-oxidoreduction, and the delivery of heme and its covalent ligation. One of these components, CcmI (also called CycH), is thought to act as an apo-Cyt c chaperone. In R. capsulatus , CcmI-null mutants are unable to produce c -type Cyts and thus sustain photosynthetic (Ps) growth. Previously, we have shown that overproduction of the putative heme ligation components CcmF and CcmH Rc (also called Ccl1 and Ccl2) can partially bypass the function of CcmI on minimal, but not on enriched, media. Here, we demonstrate that either additional overproduction of CcmG (also called HelX) or hyperproduction of CcmF-CcmH Rc is needed to completely overcome the role of CcmI during the biogenesis of c -type Cyts on both minimal and enriched media. These findings indicate that, in the absence of CcmI, interactions between the heme ligation and thioreduction pathways become restricted for sufficient Cyt c production. We therefore suggest that CcmI, along with its apo-Cyt chaperoning function, is also critical for the efficacy of holo-Cyt c formation, possibly via its close interactions with other components performing the final heme ligation steps during Cyt c biogenesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3