T7 Single Strand DNA Binding Protein but Not T7 Helicase Is Required for DNA Double Strand Break Repair

Author:

Yu Man1,Masker Warren12

Affiliation:

1. Fels Institute for Cancer Research and Molecular Biology1 and

2. Department of Biochemistry,2 Temple University School of Medicine, Philadelphia, Pennsylvania 19140

Abstract

ABSTRACT An in vitro system based on Escherichia coli infected with bacteriophage T7 was used to test for involvement of host and phage recombination proteins in the repair of double strand breaks in the T7 genome. Double strand breaks were placed in a unique Xho I site located approximately 17% from the left end of the T7 genome. In one assay, repair of these breaks was followed by packaging DNA recovered from repair reactions and determining the yield of infective phage. In a second assay, the product of the reactions was visualized after electrophoresis to estimate the extent to which the double strand breaks had been closed. Earlier work demonstrated that in this system double strand break repair takes place via incorporation of a patch of DNA into a gap formed at the break site. In the present study, it was found that extracts prepared from uninfected E. coli were unable to repair broken T7 genomes in this in vitro system, thus implying that phage rather than host enzymes are the primary participants in the predominant repair mechanism. Extracts prepared from an E. coli recA mutant were as capable of double strand break repair as extracts from a wild-type host, arguing that the E. coli recombinase is not essential to the recombinational events required for double strand break repair. In T7 strand exchange during recombination is mediated by the combined action of the helicase encoded by gene 4 and the annealing function of the gene 2.5 single strand binding protein. Although a deficiency in the gene 2.5 protein blocked double strand break repair, a gene 4 deficiency had no effect. This argues that a strand transfer step is not required during recombinational repair of double strand breaks in T7 but that the ability of the gene 2.5 protein to facilitate annealing of complementary single strands of DNA is critical to repair of double strand breaks in T7.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3