Variable Carbohydrate Modifications to the Catalytic Chains of the RgpA and RgpB Proteases of Porphyromonas gingivalis W50

Author:

Curtis Michael A.1,Thickett Andrea1,Slaney Jennifer M.1,Rangarajan Minnie1,Aduse-Opoku Joseph2,Shepherd Philip2,Paramonov Nikolay1,Hounsell Elizabeth F.3

Affiliation:

1. MRC Molecular Pathogenesis Group, Department of Oral Microbiology, St. Bartholomew’s and the Royal London School of Medicine and Dentistry, Queen Mary and Westfield College, London E1 2AA,1

2. Department of Immunology, United Medical and Dental Schools, London SE1 9RT,2 and

3. Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT,3 United Kingdom

Abstract

ABSTRACT Proteases of Porphyromonas gingivalis are considered to be important virulence determinants of this periodontal bacterium. Several biochemical isoforms of arginine-specific proteases are derived from rgpA and rgpB . HRgpA is a heterodimer composed of the catalytic α chain noncovalently associated with a β adhesin chain derived from the C terminus of the initial full-length translation product. The catalytic α chain is also present as a monomer (RgpA) either free in solution or associated with membranes. rgpB lacks the coding region for the adhesin domain present in rgpA and yields only monomeric forms (RgpB) which again may be soluble or membrane associated. In this study, the catalytic chains of this unusual group of enzymes are shown to be differentially modified by the posttranslational addition of carbohydrate. A monoclonal antibody (MAb 1B5) raised to the monomeric RgpA did not react with the corresponding recombinant RgpA α chain expressed in Escherichia coli but was immunoreactive with P. gingivalis lipopolysaccharide. MAb 1B5 also reacted with the membrane-associated forms of RgpA and RgpB but not with the heterodimeric HRgpA and the soluble form of RgpB. RgpA treated with denaturants was capable of binding to MAb 1B5 whereas treatment with periodate abolished this binding, suggesting the presence of carbohydrate residues within the epitope. Chemical deglycosylation abolished immunoreactivity with MAb 1B5 and caused a ∼30% reduction in the size of the membrane-associated enzymes. Monosaccharide analysis of HRgpA and RgpA demonstrated 2.1 and 14.4%, respectively, carbohydrate by weight of protein. Furthermore, distinct differences were detected in their monosaccharide compositions, indicating that these protease isoforms are modified not only to different extents but also with different sugars. The variable nature of these additions may have a significant effect on the structure, stability, and immune recognition of these protease glycoproteins.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3