Differential Regulation of Salmonella typhimurium Type III Secreted Proteins by Pathogenicity Island 1 (SPI-1)-Encoded Transcriptional Activators InvF and HilA

Author:

Eichelberg Katrin1,Galán Jorge E.1

Affiliation:

1. Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, Connecticut 06536-0812

Abstract

ABSTRACT Salmonella enterica encodes a type III protein secretion system within a pathogenicity island (SPI-1) that is located at centisome 63 of its chromosome. This system is required for the ability of these bacteria to stimulate cellular responses that are essential for their pathogenicity. Expression of components and substrates of this system is subject to complex regulatory mechanisms. These mechanisms involve the function of HilA and InvF, two transcriptional regulatory proteins encoded within SPI-1. In this study, we examined the functional relationship between these two regulatory proteins. We found that strains carrying loss-of-function mutations in either hilA or invF differ in their ability to stimulate cellular responses. An S. typhimurium hilA mutant strain retained considerable signaling capacity that resulted in significant levels of internalization into host cells. In contrast, introduction of a nonpolar loss-of-function mutation in invF rendered S. typhimurium significantly impaired in its ability to enter host cells. Consistent with these different phenotypes, we found that HilA and InvF control the expression of different genes. HilA regulates the expression of components of the type III secretion machinery, whereas InvF controls the expression of type III secreted proteins encoded outside of SPI-1. We also found that the expression of secreted proteins encoded within SPI-1 are under the control of both HilA and InvF. Our results therefore indicate that InvF and HilA differentially control the expression of components and substrates of the invasion-associated type III secretion system.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3