Interferon Gamma Prevents Infectious Entry of Human Papillomavirus 16 via an L2-Dependent Mechanism

Author:

Day Patricia M.1,Thompson Cynthia D.1,Lowy Douglas R.1,Schiller John T.1

Affiliation:

1. Laboratory of Cellular Oncology, NCI, NIH, Bethesda, Maryland, USA

Abstract

ABSTRACT In this study, we report that gamma interferon (IFN-γ) treatment, but not IFN-α, -β, or -λ treatment, dramatically decreased infection of human papillomavirus 16 (HPV16) pseudovirus (PsV). In a survey of 20 additional HPV and animal papillomavirus types, we found that many, but not all, PsV types were also inhibited by IFN-γ. Microscopic and biochemical analyses of HPV16 PsV determined that the antiviral effect was exerted at the level of endosomal processing of the incoming capsid and depended on the JAK2/STAT1 pathway. In contrast to infection in the absence of IFN-γ, where L1 proteolytic products are produced during endosomal capsid processing and L2/DNA complexes segregate from L1 in the late endosome and travel to the nucleus, IFN-γ treatment led to decreased L1 proteolysis and retention of L2 and the viral genome in the late endosome/lysosome. PsV sensitivity or resistance to IFN-γ treatment was mapped to the L2 protein, as determined with infectious hybrid PsV, in which the L1 protein was derived from an IFN-γ-sensitive HPV type and the L2 protein from an IFN-γ-insensitive type or vice versa. IMPORTANCE A subset of HPV are the causative agents of many human cancers, most notably cervical cancer. This work describes the inhibition of infection of multiple HPV types, including oncogenic types, by treatment with IFN-γ, an antiviral cytokine that is released from stimulated immune cells. Exposure of cells to IFN-γ has been shown to trigger the expression of proteins with broad antiviral effector functions, most of which act to prevent viral transcription or translation. Interestingly, in this study, we show that infection is blocked at the early step of virus entry into the host cell by retention of the minor capsid protein, L2, and the viral genome instead of trafficking into the nucleus. Thus, a novel antiviral mechanism for IFN-γ has been revealed.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference86 articles.

1. Global burden of cancers attributable to infections in 2012: a synthetic analysis

2. Howley PM Schiller JT Lowy DR . 2013. Papillomaviruses, p 1662–1703. InKnipeDMHowleyPMCohenJIGriffinDELambRAMartinMARacanielloVRRoizmanB (ed), Fields virology, 6th ed. Lippincott Williams & Wilkins, Philadelphia, PA.

3. HPV - immune response to infection and vaccination

4. Interaction of human papillomaviruses with the host immune system: A well evolved relationship

5. Multiple infections and cancer: implications in epidemiology;Vedham V;Technol Cancer Res Treat,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3