Molecular Architecture of the Mouse DNA Polymerase α-Primase Complex

Author:

Mizuno Takeshi1,Yamagishi Kumiko1,Miyazawa Hiroshi12,Hanaoka Fumio13

Affiliation:

1. The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198,1

2. National Institute of Public Health, Meguro, Tokyo 108-8638, 2 and

3. Institute for Molecular and Cellular Biology, Osaka University, Suita, Osaka 565-0871, 3 Japan

Abstract

ABSTRACT The DNA polymerase α-primase complex is the only enzyme that provides RNA-DNA primers for chromosomal DNA replication in eukaryotes. Mouse DNA polymerase α has been shown to consist of four subunits, p180, p68, p54, and p46. To characterize the domain structures and subunit requirements for the assembly of the complex, we constructed eukaryotic polycistronic cDNA expression plasmids expressing pairwise the four subunits of DNA polymerase α. In addition, the constructs contained an internal ribosome entry site derived from poliovirus. The constructs were transfected in different combinations with vectors expressing single subunits to allow the simultaneous expression of three or four of the subunits in cultured mammalian cells. We demonstrate that the carboxyl-terminal region of p180 (residues 1235 to 1465) is essential for its interaction with both p68 and p54-p46 by immunohistochemical analysis and coprecipitation studies with antibodies. Mutations in the putative zinc fingers present in the carboxyl terminus of p180 abolished the interaction with p68 completely, although the mutants were still capable of interacting with p54-p46. Furthermore, the amino-terminal region (residues 1 to 329) and the carboxyl-terminal region (residues 1280 to 1465) were revealed to be dispensable for DNA polymerase activity. Thus, we can divide the p180 subunit into three domains. The first is the amino-terminal domain (residues 1 to 329), which is dispensable for both polymerase activity and subunit assembly. The second is the minimal core domain (residues 330 to 1279), required for polymerase activity. The third is the carboxyl-terminal domain (residues 1280 to 1465), which is dispensable for polymerase activity but required for the interaction with the other three subunits. Taken together, these results allow us to propose the first structural model for the DNA polymerase α-primase complex in terms of subunit assembly, domain structure, and stepwise formation at the cellular level.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3