The NeuroD1/BETA2 Sequences Essential for Insulin Gene Transcription Colocalize with Those Necessary for Neurogenesis and p300/CREB Binding Protein Binding

Author:

Sharma Arun1,Moore Melissa2,Marcora Edoardo2,Lee Jacqueline E.2,Qiu Yi1,Samaras Susan1,Stein Roland1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt Medical Center, Nashville, Tennessee 37232, 1 and

2. Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 803092

Abstract

ABSTRACT NeuroD1/BETA2 is a key regulator of pancreatic islet morphogenesis and insulin hormone gene transcription in islet β cells. This factor also appears to be involved in neurogenic differentiation, because NeuroD1/BETA2 is able to induce premature differentiation of neuronal precursors and convert ectoderm into fully differentiated neurons upon ectopic expression in Xenopus embryos. We have identified amino acid sequences in mammalian and Xenopus NeuroD1/BETA2 that are necessary for insulin gene expression and ectopic neurogenesis. Our results indicate that evolutionarily conserved sequences spanning the basic helix-loop-helix (amino acids [aa] 100 to 155) and C-terminal (aa 156 to 355) regions are important for both of these processes. The transactivation domains (AD1, aa 189 to 299; AD2, aa 300 to 355) were within the carboxy-terminal region, as analyzed by using GAL4:NeuroD1/BETA2 chimeras. Selective activation of mammalian insulin gene enhancer-driven expression and ectopic neurogenesis in Xenopus embryos was regulated by two independent and separable domains of NeuroD1/BETA2, located between aa 156 to 251 and aa 252 to 355. GAL4:NeuroD1/BETA2 constructs spanning these sequences demonstrated that only aa 252 to 355 contained activation domain function, although both aa 156 to 251 and 300 to 355 were found to interact with the p300/CREB binding protein (CBP) coactivator. These results implicate p300/CBP in NeuroD1/BETA2 function and further suggest that comparable mechanisms are utilized to direct target gene transcription during differentiation and in adult islet β cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3