Multiple complex families of endogenous retroviruses are highly conserved in the genus Gallus

Author:

Boyce-Jacino M T1,O'Donoghue K1,Faras A J1

Affiliation:

1. Institute of Human Genetics, University of Minnesota, Minneapolis 55455.

Abstract

We have analyzed the genome of the domestic chicken for the presence of genetic sequences related to the envelope protein-encoding genes of avian sarcoma/leukosis retroviruses to determine the organization, structure, potential functionality, and distribution of such sequences. We have previously identified in the genus Gallus an extensive group of endogenous avian retroviruses termed EAV-0. Southern blot and sequence analysis presented here of EAV-0 elements revealed that the majority of the EAV-0 elements in the domestic chicken genome have large deletions in their env genes. Screening of a line 0 chicken genomic DNA library for potential full-length env gene-containing endogenous elements yielded three provirus clones of a previously unrecognized group of endogenous retroviruses. These three clones, E13, E33, and E51, are more closely related to each other (80% or more sequence identity) than to other avian retroviruses (70% or less sequence identity). The E13 element has a large deletion in env, but the E51 element has full-length and highly divergent SU- and TM-coding domains. Complete sequence analysis of the E51 env gene region revealed a defective SU-coding domain and an intact TM-coding domain. Sequence analysis of the E51, E33, and E13 3' termini revealed highly distinctive long terminal repeats of approximately 360 bp which appear to be the products, in part, of long terminal repeat domain shuffling. Hybridization analysis with E51 and E33 env gene probes indicated that they are members of an extensive group of elements present in all Gallus species, and at least one element, E51, could be shown by polymerase chain reaction amplification and direct sequencing to have integrated prior to Gallus speciation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3