Changes in Population Dynamics during Long-Term Evolution of Sabin Type 1 Poliovirus in an Immunodeficient Patient

Author:

Odoom John K.1,Yunus Zaira1,Dunn Glynis1,Minor Philip D.1,Martín Javier1

Affiliation:

1. Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom

Abstract

ABSTRACT The evolution of the Sabin strain of type 1 poliovirus in a hypogammaglobulinemia patient for a period of 649 days is described. Twelve poliovirus isolates from sequential stool samples encompassing days 21 to 649 after vaccination with Sabin 1 were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin 1 strain. Poliovirus isolates from the immunodeficient patient evolved gradually toward non-temperature-sensitive and neurovirulent phenotypes, accumulating mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. Analysis of plaque-purified viruses from stool samples revealed complex genetic and evolutionary relationships between the poliovirus strains. The generation of various coevolving genetic lineages incorporating different mutations was observed at early stages of virus excretion. The main driving force for genetic diversity appeared to be the selection of mutations at attenuation sites, particularly in the 5′ noncoding region and the VP1 BC loop. Recombination between virus strains from the two main lineages was observed between days 63 and 88. Genetic heterogeneity among plaque-purified viruses at each time point seemed to decrease with time, and only viruses belonging to a unique genotypic lineage were seen from day 105 after vaccination. The relevance of vaccine-derived poliovirus strains for disease surveillance and future polio immunization policies is discussed in the context of the Global Polio Eradication Initiative.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3