Small nuclear RNA genes transcribed by either RNA polymerase II or RNA polymerase III in monocot plants share three promoter elements and use a strategy to regulate gene expression different from that used by their dicot plant counterparts.

Author:

Connelly S,Marshallsay C,Leader D,Brown J W,Filipowicz W

Abstract

RNA polymerase (Pol) II- and RNA Pol III-transcribed small nuclear RNA (snRNA) genes of dicotyledonous plants contain two essential upstream promoter elements, the USE and TATA. The USE is a highly conserved plant snRNA gene-specific element, and its distance from the -30 TATA box, corresponding to approximately three and four helical DNA turns in Pol III and Pol II genes, respectively, is crucial for determining RNA Pol specificity of transcription. Sequences upstream of the USE play no role in snRNA gene transcription in dicot plants. Here we show that for expression of snRNA genes in maize, a monocotyledonous plant, the USE and TATA elements are essential, but not sufficient, for transcription. Efficient expression of both Pol II- and Pol III-specific snRNA genes in transfected maize protoplasts requires an additional element(s) positioned upstream of the USE. This element, named MSP (for monocot-specific promoter; consensus, RGCCCR), is present in one to three copies in monocot snRNA genes and is interchangeable between Pol II- and Pol III-specific genes. The efficiency of snRNA gene expression in maize protoplast is determined primarily by the strength of the MSP element(s); this contrasts with the situation in protoplasts of a dicot plant, Nicotiana plumbaginifolia, where promoter strength is a function of the quality of the USE element. Interestingly, the organization of monocot Pol III-specific snRNA gene promoters closely resembles those of equivalent vertebrate promoters. The data are discussed in the context of the coevolution of Pol II- and Pol III-specific snRNA gene promoters within many eukaryotic organisms.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3