Mycoplasma pneumoniae Infection Induces Reactive Oxygen Species and DNA Damage in A549 Human Lung Carcinoma Cells

Author:

Sun Gongping1,Xu Xuefeng2,Wang Yingshuo2,Shen Xiaoyun1,Chen Zhimin2,Yang Jun134

Affiliation:

1. Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China

2. The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310008, China

3. National Key Laboratory for Infectious Disease Diagnosis and Therapy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310008, China

4. Zhejiang California International NanoSystems Institute, Hangzhou, Zhejiang, 310030, China

Abstract

ABSTRACT Mycoplasma pneumoniae is a frequent cause of community-acquired bacterial respiratory infections in children and adults. In the present study, using a proteomic approach, we studied the effects of M. pneumoniae infection on the protein expression profile of A549 human lung carcinoma cells. M. pneumoniae infection induced changes in the expression of cellular proteins, in particular a group of proteins involved in the oxidative stress response, such as glucose-6-phosphate 1-dehydrogenase, NADH dehydrogenase (ubiquinone) Fe-S protein 2, and ubiquinol-cytochrome c reductase complex core protein I mitochondrial precursor. The oxidative status of M. pneumoniae -infected cells was evaluated, and the results revealed that M. pneumoniae infection indeed caused generation of reactive oxygen species (ROS). It was further shown that M. pneumoniae infection also induced DNA double-strand breaks, as demonstrated by the formation of γH2AX foci. On the other hand, an ROS scavenger, N -acetylcysteine, could inhibit the ROS generation, as well as decrease γH2AX focus formation. This is the first report showing that M. pneumoniae infection can directly induce DNA damage, at least partially, through the generation of ROS, and thus this report strengthens the powerful application of proteomics in the study of the pathogenesis of M. pneumoniae .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3