Regulation of nap Gene Expression and Periplasmic Nitrate Reductase Activity in the Phototrophic Bacterium Rhodobacter sphaeroides DSM158

Author:

Gavira Mónica1,Roldán M. Dolores1,Castillo Francisco1,Moreno-Vivián Conrado1

Affiliation:

1. Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Campus Universitario de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain

Abstract

ABSTRACT Bacterial periplasmic nitrate reductases (Nap) can play different physiological roles and are expressed under different conditions depending on the organism. Rhodobacter sphaeroides DSM158 has a Nap system, encoded by the napKEFDABC gene cluster, but nitrite formed is not further reduced because this strain lacks nitrite reductase. Nap activity increases in the presence of nitrate and oxygen but is unaffected by ammonium. Reverse transcription-PCR and Northern blots demonstrated that the napKEFDABC genes constitute an operon transcribed as a single 5.5-kb product. Northern blots and nap - lacZ fusions revealed that nap expression is threefold higher under aerobic conditions but is regulated by neither nitrate nor ammonium, although it is weakly induced by nitrite. On the other hand, nitrate but not nitrite causes a rapid enzyme activation, explaining the higher Nap activity found in nitrate-grown cells. Translational nap ′-′ lacZ fusions reveal that the napK and napD genes are not efficiently translated, probably due to mRNA secondary structures occluding the translation initiation sites of these genes. Neither butyrate nor caproate increases nap expression, although cells growing phototrophically on these reduced substrates show a very high Nap activity in vivo (nitrite accumulation is sevenfold higher than in medium with malate). Phototrophic growth on butyrate or caproate medium is severely reduced in the NapA mutants. Taken together, these results indicate that nitrate reduction in R. sphaeroides is mainly regulated at the level of enzyme activity by both nitrate and electron supply and confirm that the Nap system is involved in redox balancing using nitrate as an ancillary oxidant to dissipate excess reductant.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3