Author:
Raska I,Mayer F,Edelbluth C,Schmitt R
Abstract
The proximal hooks of plain and complex flagella produced by a strain of Pseudomonas rhodos have been analyzed by electron microscopy and optical diffraction and filtering. Plain flagellar hooks are cone-shaped, 70 nm long, and 13 to 21.5 nm wide, and consist of helically arranged subunits. Complex flagellar hooks are cylinders, 180 to 190 nm long, and 15 to 16 nm wide, and are composed of globular subunits. The structure comprises four small-scale helical rows of subunits intersecting bewteen 10 and 11 large-scale helices of pitch angle 80 degrees. The axial and lateral dimensions of the unit cell, which define the surface lattice, are 4.9 and 4.7 nm, respectively. In addition, a core structure, approximately 5 nm wide, has been demonstrated inside the hook cylinder. Complex flagellar hooks were isolated and purified by gradient centrifugation after acid degradation of the attached filaments. Isolated hook particles have an average sedimentation constant of 130S and consist of a protein of molecular weight 43,000. A model of the complex flagellar hook is presented, and its possible role in flagellar assembly and rotation is discussed.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献