Binding of polyomavirus large T antigen to the human hsp70 promoter is not required for trans activation.

Author:

Kingston R E,Cowie A,Morimoto R I,Gwinn K A

Abstract

Polyomavirus large T antigen binds to two sites located between positions -110 and -170 of a human heat shock protein 70 (hsp70) promoter. Methylation interference studies show that binding for each site is determined by two GPuGGC pentanucleotide sequences. The specificity of this binding interaction is similar to that observed for large T binding to the viral genome. The existence of sequences that bind a viral protein in a cellular promoter raises the possibility that these sequences play a role in gene expression in an uninfected cell. We show that hsp70 large T antigen binding site 1 is capable of functioning as an upstream promoter element in cells that do not contain any viral T antigen. Genetic analysis of this effect suggests that a cellular factor exists that has a binding specificity that overlaps but is not identical to that of polyomavirus large T antigen. To determine whether binding of polyomavirus large T antigen can regulate expression of the intact human hsp70 promoter, we have introduced the promoter into mouse cells with plasmids that express the polyomavirus early proteins. These proteins stimulate the level of correctly initiated hsp70 transcripts, but surprisingly the degree of stimulation remains unchanged for promoter constructs in which the large T antigen binding sites have been deleted. These observations suggest that trans activation of the hsp70 promoter by the polyomavirus early proteins occurs through protein-protein interactions and not through sequence-specific DNA binding.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3