ORF334 in Vibrio Phage KVP40 Plays the Role of gp27 in T4 Phage To Form a Heterohexameric Complex

Author:

Nemoto Mai1,Mio Kazuhiro2,Kanamaru Shuji1,Arisaka Fumio1

Affiliation:

1. Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4359-B39 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan

2. National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2, Umezono 1-1-4, Tsukuba Science City, Ibaraki 305-8568, Japan

Abstract

ABSTRACT KVP40 is a T4-related phage, composed of 386 open reading frames (ORFs), that has a broad host range. Here, we overexpressed, purified, and biophysically characterized two of the proteins encoded in the KVP40 genome, namely, gp5 and ORF334. Homology-based comparison between KVP40 and its better-characterized sister phage, T4, was used to estimate the two KVP40 proteins' functions. KVP40 gp5 shared significant homology with T4 gp5 in the N- and C-terminal domains. Unlike T4 gp5, KVP40 gp5 lacked the internal lysozyme domain. Like T4 gp5, KVP40 gp5 was found to form a homotrimer in solution. In stark contrast, KVP40 ORF334 shared no significant homology with any known proteins from T4-related phages. KVP40 ORF334 was found to form a heterohexamer with KVP40 gp5 in solution in a fashion nearly identical to the interaction between the T4 gp5 and gp27 proteins. Electron microscope image analysis of the KVP40 gp5-ORF334 complex indicated that it had dimensions very similar to those of the T4 gp5-gp27 structure. On the basis of our biophysical characterization, along with positional genome information, we propose that ORF334 is the ortholog of T4 gp27 and that it plays the role of a linker between gp5 and the phage baseplate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3