Polycation binding to isolated lipopolysaccharide from antibiotic-hypersusceptible mutant strains of Escherichia coli

Author:

Rocque W J1,Fesik S W1,Haug A1,McGroarty E J1

Affiliation:

1. Department of Biochemistry, Michigan State University, East Lansing 48824.

Abstract

Lipopolysaccharide (LPS) samples isolated from a parent and two antibiotic-hypersusceptible mutant strains of Escherichia coli were analyzed for polycation affinity and level of binding. Purified salts of the LPSs from the parent strain, UB1005, and from one of the mutant strains, DC1, bound similar amounts of sodium and magnesium, but the samples from the second mutant strain, DC2, had significantly greater amounts of counterions bound per phosphate than did the other two isolates. The 31P nuclear magnetic resonance spectra indicated that, compared with LPS from the parental strain, the sample from strain DC1 was similar but the DC2 sample contained fewer diphosphodiester and more diphosphomonoester groups. Motion within the lipid A head group regions of the magnesium salts of the three isolates was dramatically different, as revealed by an electron spin resonance probe. The binding of the cations to the LPS aggregates was measured by the displacement of this cationic spin probe from the LPS samples. The polycations polymyxin, gentamicin, and spermine displaced more probe from samples of the two mutant strains than from that of the parental strain. The sample from the most antibiotic-susceptible strain, DC2, had the highest affinity for all the polyvalent cations tested. The results indicate that antibiotic hypersusceptibility can result from at least two distinct alterations in LPS structure. The decrease in diphosphodiesters and increase in diphosphomonoesters in the LPS of the DC2 sample resulted in more acidic phosphate moieties and a more antibiotic-susceptible cell. In contrast, the alterations in the LPS of DC1 that resulted in antibiotic hypersusceptibility of the cell were not in the phosphate substituents. In both mutants, however, hypersusceptibility resulted in an alteration in LPS structure that increased the affinity of the molecules for polycations.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Outer Membrane Interaction Kinetics of New Polymyxin B Analogs in Gram-Negative Bacilli;Antimicrobial Agents and Chemotherapy;2019-10

2. Aminoglycosides;Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases;2015

3. Antimicrobial Peptides for Gram-Negative Sepsis: A Case for the Polymyxins;Frontiers in Immunology;2012

4. Relationships between physicochemical characteristics and biological activity of lipopolysaccharides;Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology;2011-12

5. Development of Small-Molecule Endotoxin Sequestering Agents;Subcellular Biochemistry;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3