Roles of Sortase in Surface Expression of the Major Protein Adhesin P1, Saliva-Induced Aggregation and Adherence, and Cariogenicity of Streptococcus mutans

Author:

Lee Song F.12,Boran Thomas L.3

Affiliation:

1. Department of Applied Oral Sciences

2. Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

3. Department of Dental Clinical Sciences, Faculty of Dentistry

Abstract

ABSTRACT Sortase is a newly discovered transpeptidase that covalently links LPXTGX-containing surface proteins to the gram-positive bacterial cell wall. In this study, the sortase gene ( srtA ) was isolated from Streptococcus mutans NG8 by PCR. The gene encoded a 246-amino-acid protein, including a 40-amino-acid signal peptide. The srtA gene was insertionally inactivated by a tetracycline resistance cassette. P1, a major surface protein adhesin previously shown to anchor to the peptidoglycan by the LPXTGX motif, was secreted into the culture medium by the srtA mutant. In contrast, the wild-type P1 remained cell wall associated. Complementation of the mutant with srtA restored the P1 surface expression phenotype. P1 produced by the mutant, but not that produced by the wild type and the srtA -complemented mutant, was recognized by an antibody raised against the hydrophobic domain and charged tail C terminal to the LPXTGX motif. These results suggest that the failure to anchor P1 to the cell wall is due to the lack of cleavage of P1 at the LPXTGX motif. The srtA mutant was markedly less hydrophobic than the wild type and the complemented mutant. The srtA mutant failed to aggregate in the presence of saliva or salivary agglutinin and adhered poorly to saliva- or salivary agglutinin-coated hydroxylapatite. In rats, the srtA mutant colonized the teeth poorly when sucrose was absent. When sucrose was present, the srtA mutant colonized the teeth but less effectively and induced significantly less caries ( P < 0.05) than the wild-type strain. In conclusion, the sortase enzyme in S. mutans is responsible for anchoring P1 to the cell surface and plays a role in modulating the surface properties and cariogenicity of S. mutans .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3