Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum

Author:

Baronofsky Jerald J.1,Schreurs Wilhelmus J. A.1,Kashket Eva R.1

Affiliation:

1. Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118

Abstract

When cells of the anaerobic thermophile Clostridium thermoaceticum grow in batch culture and homoferment glucose to acetic acid, the pH of the medium decreases until growth and then acid production cease, at about pH 5. We postulated that the end product of fermentation limits growth by acting as an uncoupling agent. Thus, when the pH of the medium is low, the cytoplasm of the cells becomes acidified below a tolerable pH. We have therefore measured the internal pH of growing cells and compared these values with those of nongrowing cells incubated in the absence of acetic acid. Growing cells maintained an interior about 0.6 pH units more alkaline than the exterior throughout most of batch growth (i.e., ΔpH = 0.6). We also measured the transmembrane electrical potential (ΔΨ), which decreased from 140 mV at pH 7 at the beginning of growth to 80 mV when the medium had reached pH 5. The proton motive force, therefore, was 155 mV at pH 7, decreasing to 120 mV at pH 5. When further fermentation acidified the medium below pH 5, both the ΔpH and the ΔΨ collapsed, indicating that these cells require an internal pH of at least 5.5 to 5.7. Cells harvested from stationary phase and suspended in citrate-phosphate buffer maintained a ΔpH of 1.5 at external pH 5.0. This ΔpH was dissipated by acetic acid (at the concentrations found in the growth medium) and other weak organic acids, as well as by ionophores and inhibitors of glycolysis and of the H + -ATPase. Nongrowing cells had a ΔΨ which ranged from about 116 mV at external pH 7 to about 55 mV at external pH 5 and which also was sensitive to ionophores. Since acetic acid, in its un-ionized form, diffuses passively across the cytoplasmic membrane, it effectively renders the membrane permeable to protons. It therefore seems unlikely that mutations at one or a few loci would result in C. thermoaceticum cells significantly more acetic acid tolerant than their parental type.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3