Comparison of Immunogenicities of Recombinant Plasmodium vivax Merozoite Surface Protein 1 19- and 42-Kilodalton Fragments Expressed in Escherichia coli

Author:

Sachdeva Suraksha1,Ahmad Gul1,Malhotra Pawan1,Mukherjee Paushali1,Chauhan V. S.1

Affiliation:

1. International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Abstract

ABSTRACT The 42- and 19-kDa C-terminal fragments of merozoite surface protein 1 (MSP-1 42 and MSP-1 19 , respectively) are both promising blood-stage vaccine candidate antigens. At present, it is not clear which of the two antigens will be more suitable for inclusion in a cocktail malaria vaccine. In the present study, we expressed the two C-terminal fragments of Plasmodium vivax MSP-1 (PvMSP-1) in an Escherichia coli expression system and purified them by using a rapid two-step protocol. Both of the products were recognized by monoclonal antibodies against PvMSP-1 as well as by immune sera from several individuals exposed to P. vivax . We analyzed and compared the immunological responses to recombinant PvMSP-1 19 and PvMSP-1 42 in mice by using six different adjuvant formulations. Moderate to high antibody responses were observed with both of the antigens in different adjuvant formulations. Surprisingly, alum, which is generally considered to be a poor adjuvant for recombinant malaria antigens, was found to be as good an adjuvant as Montanide ISA 720, ASO2A, and other adjuvant formulations. Most adjuvant formulations induced high levels of immunoglobulin G1 (IgG1), followed by IgG3 and IgG2. Lymphocytes from animals in the PvMSP-1 42 - and PvMSP-1 19 -immunized groups showed proliferative responses upon stimulation with the respective antigens, and high levels of interleukin-4 (IL-4), IL-5, and gamma interferon were detected in the culture supernatants. Immunodepletion studies with sera from mice immunized with these two antigens showed that while immunization with PvMSP-1 42 does produce a PvMSP-1 19 -specific response, a substantial portion is also focused on structures in PvMSP-1 42 not represented by the epidermal growth factor-like domains of PvMSP-1 19 . These findings may have implications for the design of MSP-1-based vaccine constructs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3