Merozoite Surface Protein 4/5 Provides Protection against Lethal Challenge with a Heterologous Malaria Parasite Strain

Author:

Goschnick M. W.1,Black C. G.12,Kedzierski L.1,Holder A. A.3,Coppel R. L.12

Affiliation:

1. Department of Microbiology

2. Victorian Bioinformatics Consortium, Monash University, Victoria, Australia

3. Division of Parasitology, National Institute for Medical Research, London, United Kingdom

Abstract

ABSTRACT Immunization with merozoite surface protein 4/5 (MSP4/5), the murine malaria homologue of Plasmodium falciparum MSP4 and MSP5, has been shown to protect mice against challenge by parasites expressing the homologous form of the protein. The gene encoding MSP4/5 was sequenced from a number of Plasmodium yoelii isolates in order to assess the level of polymorphism in the protein. The gene was found to be highly conserved among the 13 P. yoelii isolates sequenced, even though many of the same isolates showed pronounced variability in their MSP1 19 sequences. Nonsynonymous mutations were detected only for the isolates Plasmodium yoelii nigeriensis N67 and Plasmodium yoelii killicki 193L and 194ZZ. Immunization and challenge of BALB/c mice showed that the heterologous MSP4/5 proteins were able to confer a level of protection against lethal Plasmodium yoelii yoelii YM challenge infection similar to that induced by immunization with the homologous MSP4/5 protein. To explore the limits of heterologous protection, mice were immunized with recombinant MSP4/5 protein from Plasmodium berghei ANKA and Plasmodium chabaudi adami DS and challenged with P. y. yoelii YM. Interestingly, significant protection was afforded by P. berghei ANKA MSP4/5, which shows 81% sequence identity with P. y. yoelii YM MSP4/5, but it was abolished upon reduction and alkylation. Significant protection was not observed for mice immunized with recombinant P. c. adami DS MSP4/5, which shows 55.7% sequence identity with P. y. yoelii YM MSP4/5. This study demonstrates the robustness of MSP4/5 in conferring protection against variant forms of the protein in a murine challenge system, in contrast to the situation found for other asexual-stage proteins, such as MSP1 19 and AMA1.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3