Artificial Recruitment of Mediator by the DNA-Binding Domain of Adr1 Overcomes Glucose Repression of ADH2 Expression

Author:

Young Elton T.1,Tachibana Christine1,Chang Hsin-Wen Ella1,Dombek Kenneth M.1,Arms Erin M.1,Biddick Rhiannon1

Affiliation:

1. Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350

Abstract

ABSTRACT The transcription factor Adr1 activates numerous genes in nonfermentable carbon source metabolism. An unknown mechanism prevents Adr1 from stably binding to the promoters of these genes in glucose-grown cells. Glucose depletion leads to Snf1-dependent binding. Chromatin immunoprecipitation showed that the Adr1 DNA-binding domain could not be detected at the ADH2 promoter under conditions in which the binding of the full-length protein occurred. This suggested that an activation domain is required for stable binding, and coactivators may stabilize the interaction with the promoter. Artificial recruitment of Mediator tail subunits by fusion to the Adr1 DNA-binding domain overcame both the inhibition of promoter binding and glucose repression of ADH2 expression. In contrast, an Adr1 DNA-binding domain-Tbp fusion did not overcome glucose repression, although it was an efficient activator of ADH2 expression under derepressing conditions. When Mediator was artificially recruited, ADH2 expression was independent of SNF1 , SAGA, and Swi/Snf, whereas ADH2 expression was dependent on these factors with wild-type Adr1. These results suggest that in the presence of glucose, the ADH2 promoter is accessible to Adr1 but that other interactions that occur when glucose is depleted do not take place. Artificial recruitment of Mediator appears to overcome this requirement and to allow stable binding and transcription under normally inhibitory conditions.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3