Anthrax Toxin as a Molecular Tool for Stimulation of Cytotoxic T Lymphocytes: Disulfide-Linked Epitopes, Multiple Injections, and Role of CD4 + Cells

Author:

Ballard Jimmy D.1,Collier R. John1,Starnbach Michael N.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts

Abstract

ABSTRACT We have previously demonstrated that anthrax toxin-derived proteins, protective antigen (PA) and the amino-terminal portion of lethal factor (LFn), can be used in combination to deliver heterologous molecules to the cytosol of mammalian cells. In this study we examined the ability of an LFn-peptide disulfide-linked heterodimer to prime cytotoxic T lymphocytes (CTL) in the presence of PA. A mutant of LFn that contains a carboxy-terminal reactive cysteine was generated. This form of LFn could be oxidized with a synthetic cysteine containing peptide to form a heterodimer of the protein and peptide. Mice injected with the heterodimer plus PA mounted a peptide-specific CTL response, indicating that this molecule functioned similarly to the genetically fused forms used previously. We also report the results of an analysis of two aspects of this system important for the development of experimental vaccines. First, CD4 knockout mice were unable to generate a CTL response when treated with PA plus an LFn-epitope fusion protein, suggesting that CD4 + helper responses are essential for stimulating specific CTL with the PA-LFn system. Second, we now show that primary injection with this system does not generate any detectable antibody response to the vaccine components and that prior immunization has no effect on priming a CTL response to an unrelated epitope upon subsequent injection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3