CD4+ and CD8+ T-cell-dependent and -independent host defense mechanisms can operate to control and resolve primary and secondary Francisella tularensis LVS infection in mice

Author:

Conlan J W1,Sjöstedt A1,North R J1

Affiliation:

1. Trudeau Institute, Inc., Saranac Lake, New York 12983.

Abstract

Immunity to experimental infection with the facultative intracellular bacterium Francisella tularensis is generally considered an example of T-cell-mediated, macrophage-expressed immunity. However, the results of the present study indicate that T-cell-independent mechanisms are also important in anti-Francisella defense. They show that mice selectively depleted of CD4+, CD8+, or both T-cell populations by treatment with T-cell subset-specific monoclonal antibodies remained capable of controlling and partly resolving a primary sublethal Francisella infection. Similarly, it was found that Francisella-immune mice depleted of either or both subsets of T cells retain a high degree of acquired immunity to reinfection. Together, these findings imply that resistance to primary and secondary tularemia can be mediated by cells other than CD4+ and CD8+ T cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3